投稿指南
一、稿件要求: 1、稿件内容应该是与某一计算机类具体产品紧密相关的新闻评论、购买体验、性能详析等文章。要求稿件论点中立,论述详实,能够对读者的购买起到指导作用。文章体裁不限,字数不限。 2、稿件建议采用纯文本格式(*.txt)。如果是文本文件,请注明插图位置。插图应清晰可辨,可保存为*.jpg、*.gif格式。如使用word等编辑的文本,建议不要将图片直接嵌在word文件中,而将插图另存,并注明插图位置。 3、如果用电子邮件投稿,最好压缩后发送。 4、请使用中文的标点符号。例如句号为。而不是.。 5、来稿请注明作者署名(真实姓名、笔名)、详细地址、邮编、联系电话、E-mail地址等,以便联系。 6、我们保留对稿件的增删权。 7、我们对有一稿多投、剽窃或抄袭行为者,将保留追究由此引起的法律、经济责任的权利。 二、投稿方式: 1、 请使用电子邮件方式投递稿件。 2、 编译的稿件,请注明出处并附带原文。 3、 请按稿件内容投递到相关编辑信箱 三、稿件著作权: 1、 投稿人保证其向我方所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我方所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我方所投之作品不得同时向第三方投送,即不允许一稿多投。若投稿人有违反该款约定的行为,则我方有权不向投稿人支付报酬。但我方在收到投稿人所投作品10日内未作出采用通知的除外。 5、 投稿人授予我方享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 投稿人委托我方声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

基于支持向量机模型的地铁进站客流量预测(3)

来源:交通运输工程学报 【在线投稿】 栏目:期刊导读 时间:2020-10-24
作者:网站采编
关键词:
摘要:对比可知,使用SVM模型预测结果平均相对误差为18.21%,主要为序号17和18,即22:00—24:00时段的预测误差较大,在22:00—24:00时段客流进站量较其他时段少,

对比可知,使用SVM模型预测结果平均相对误差为18.21%,主要为序号17和18,即22:00—24:00时段的预测误差较大,在22:00—24:00时段客流进站量较其他时段少,SVM模型对该时段预测拟合较差。使用GA-SVM模型主要为序号14和16,即在19:00—22:00时段的预测误差较大,最大误差为44.15%,是因为在参数寻优时GA算法易发生收敛早熟,从而影响了整体的预测效果。

笔者提出改进支持向量机模型预测方法,即PSO-SVM模型方法能有效地改善地铁进站客流量预测误差,预测精度更高,将该方法预测地铁进站客流量是可行的。

表2 不同模型预测误差结果Tab.2 Prediction results of different models方法平均相对误差RME/%最大相对误差/%.57

3结论

考虑到地铁的客流特性,运用支持向量机模型,结合SVM工具箱对客流数据进行学习训练,运用粒子群优化算法进行参数寻优从而改进支持向量机模型,并通过预测数据与原始数据对比验证了预测的有效性。结果表明,该模型(PSO-SVM)较传统的SVM模型、GA-SVM模型的客流量预测结果具有更好的预测效果,可用于地铁进站客流量的预测研究。本文的训练数据仅为两周的日常进站数据,随着支持向量机理论的不断发展,今后也可从模型组合方面对本课题进行更为深入的研究。若采集更为丰富的进站客流数据,还可进一步改善模型预测误差,提高预测精度。

[1] 邵星杰,张宁,邱华瑞.城市轨道交通客流时空演变规律建模研究[J].都市快轨交通,2015,28(2):65-69.

SHAO Xingjie, ZHAN Ning, QIU Huarui. Modeling research on spatial and temporal evolution of passenger flows of urban rail transit[J].Urban Rapid Rail Transit,2015,28(2):65-69.

[2] 王莹,韩宝明,张琦,等.基于SARIMA模型的北京地铁进站客流量预测[J].交通运输系统工程与信息,2015,15(6): 205-211.

WANG Ying,HAN Baoming,ZHANG Qi,et al. Forecasting of entering passenger flow volume in Beijing subway based on SARIMA model [J].Journal of Transportation Systems Engineering and Information Technology, 2015,15(6):205-211.

[3] 孟品超,李学源,贾洪飞,等.基于滑动平均法的轨道交通短时客流实时预测[J].吉林大学学报(工学版),2018,48(2): 448-453.

MENG Pinchao,LI Xueyuan,JIA Hongfei,et al. Short-time rail transit passenger flow real-time prediction based on moving average[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(2):448-453.

[4] 李春晓,李海鹰,蒋熙,等.基于广义动态模糊神经网络的短时车站进站客流量预测[J].都市快轨交通,2015,28(4):57-61.

LI Chunxiao, LI Haiying, JIANG Xi, et al. Short-term entrance passenger flow forecast at urban rail transit station based on generalized dynamic fuzzy neural networks[J]. Urban Rapid Rail Transit, 2015, 28(4):57-61.

[5] 樊娜,赵祥模,戴明,等.短时交通流预测模型[J].交通运输工程学报,2012,12(4):114-119.

FAN Na, ZHAO Xiangmo, DAI Ming, et al. Short-time traffic flow prediction model[J].Journal of Traffic and Transportation Engineering,2012,12(4):114-119.

[6] 姚智胜,邵春福,熊志华.基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究[J].中国管理科学, 2007,15(1):64-68.

YAO Zhisheng,SHAO Chunfu,XIONG Zhihua. Research on short-term traffic flow combined forecasting based on wavelet package and least square support vector machines [J]. Chinese Journal of Management Science, 2007,15(1): 64-68.

[7] 王惟,李志鹏.粒子群优化支持向量机的交通量预测方法[J].山西大同大学学报(自然科学版), 2015,31(2):25-28.

WANG Wei,LI Zhipeng. Traffic prediction method based on particle swarm optimized support vector machine[J]. Journal of Shanxi Datong University (Natural Science), 2015,31(2):25-28.

[8] 邓浒楠,朱信山,张琼,等.基于多核最小二乘支持向量机的短期公交客流预测[J].交通运输工程与信息学报,2012,10(2):84-131.

DENG Hunan,ZHU Xinshan,ZHANG Qiong,et al. Prediction of short-term pubic transportation flow based on multiple-kernel least square support vector machine[J]. Journal of Transportation Engineering and Information, 2012,10(2):84-88.

[9] 刘润莉.地铁运营客流量计算模型研究[D].成都:电子科技大学,2012.

LIU Runli. Research on Calculation Model of Passenger Flow in Subway Operation [D].Chengdu: University of Electronic Science and Technology of China,2012.

[10] 赵钰棠,杨信丰,杨柯.基于支持向量机的地铁客流量预测[J].都市快轨交通, 2014,27(3):35-38.

ZHAO Yutang,YANG Xinfeng,YANG traffic prediction based on support vector machine [J].Urban Rapid Rail Transit,2014,27(3):35-38.

[11] 顾嘉运,刘晋飞,陈明.基于SVM的大样本数据回归预测改进算法[J].计算机工程,2014,40(1):161-166.

GU Jiayun, LIU Jinfei, CHEN Ming. A modified regression prediction algorithm of large sample data based on SVM[J].Computer Engineering,2014,40(1):161-166.

文章来源:《交通运输工程学报》 网址: http://www.jtysgcxb.cn/qikandaodu/2020/1024/411.html



上一篇:基于累积Logistic回归模型的管制员应激程度预
下一篇:新时代交通运输工程专业研究生人才素养需求及

交通运输工程学报投稿 | 交通运输工程学报编辑部| 交通运输工程学报版面费 | 交通运输工程学报论文发表 | 交通运输工程学报最新目录
Copyright © 2021 《交通运输工程学报》杂志社 版权所有 Power by DedeCms
投稿电话:13319539112(微信同号) 投稿邮箱:kf@400qikan.com