- · 《交通运输工程学报》收[09/07]
- · 《交通运输工程学报》数[09/07]
- · 《交通运输工程学报》栏[09/07]
- · 《交通运输工程学报》刊[09/07]
- · 《交通运输工程学报》征[09/07]
- · 《交通运输工程学报》投[09/07]
基于支持向量机模型的地铁进站客流量预测
作者:网站采编关键词:
摘要:城市轨道交通在缓解城市道路拥堵方面发挥着重要作用,随着城市轨道交通线网规模的扩大,根据客流量变化动态调整运输组织方案,保障地铁安全有效运营尤为重要。进站客流量是客
城市轨道交通在缓解城市道路拥堵方面发挥着重要作用,随着城市轨道交通线网规模的扩大,根据客流量变化动态调整运输组织方案,保障地铁安全有效运营尤为重要。进站客流量是客流量预测的重要组成,影响进站设施布置和进站流线组织[1],能够帮助轨道交通运营部门编制车站日常运营组织。
现有预测的方法有很多种,基于数学与统计理论的预测方法主要有时间序列模型、回归预测模型、卡尔曼滤波模型、神经网络模型、非参数回归预测方法、支持向量机模型预测等方法。王莹等[2]利用SARIMA模型对北京地铁进站客流量进行时间序列建模,但没有考虑时间以外的其他信息,而轨道交通是复杂的非线性系统,会受到多种因素的影响。孟品超等[3]运用历史客流相似性特点,通过滑动平均法来预测地铁站点各个时间段的客流量,该方法对历史客流要求较高。客流预测方法通常集中于神经网络模型[4]、非参数回归预测方法[5]、支持向量机模型预测方法[6]。非参数回归预测方法不需要先验知识,但需要足够的历史数据;神经网络模型对初始权值非常敏感,算法稳定性差。而支持向量机模型预测方法能够较好地解决“局部极小点”、“非线性和维数灾难”、“小样本”等问题,但大多应用在故障检测以及道路交通方面。王惟等[7]利用小生境粒子群算法优化支持向量机模型来预测道路交通流。邓浒楠等[8]根据短期公交客流具有非线性、随机性和复杂性的特点,以及支持向量机单核核函数存在自适应能力较弱的问题,提出了一种基于多核最小二乘支持向量机的公交客流预测方法,兼顾交通状态的规律性和时变性特征。刘润莉[9]运用蚁群算法改善支持向量机模型预测地铁进站日客流量,但预测效果不佳。赵钰棠等[10]通过构造支持向量机模型预测地铁进站小时客流量,但预测因子的选择比较单一。
笔者在自动售检票系统提供的乘客刷卡数据的基础上,采用支持向量机模型,考虑到地铁客流的特性,结合支持向量机模型工具箱对客流数据进行学习训练,运用粒子群优化算法进行参数寻优确定预测模型,并通过预测数据与原始数据对比来验证预测的有效性。
1预测模型原理
1.1支持向量机算法
支持向量机(SVM)是建立在VC维和结构化经验风险最小化原理的基础上的一个凸二次优化问题,可以在模型的复杂性和学习能力之间寻求最佳折中,可以较好地解决“小样本”、“非线性和维数灾难”等问题,具有良好的推广性[11]。
对于给定的样本集{(xi,yi)|i=1,2,…,k},(其中xi为输入值,yi为输出值),假设其服从于未知函数y=f(x)。首先用函数g(x)=(w·x)+b对样本数据集拟合,并使得函数f和函数g之间的距离最小,即损失函数根据结构风险最小化原则,非线性支持向量可以求解为
其中:ε0,为拟合精度;ξi为目标之上超出ε部分所设;为目标之下超出ε部分所设;常数C0代表惩罚系数;w,b为特征空间的分类器;利用Lagrange优化方法将上述问题转化为对偶问题:
其中ai与为Lagrange因子。
通过核函数K(xi,xj)将其转换为高维空间,此时求解得到回归函数:
f(x)= (w·x)+b=
核函数K(xi,xj)的选取在支持向量机运用计算中十分重要。常用的核函数有多项式核函数,径向基核函数以及Sigmoid核函数。采用Gauss径向基函数,式(4)作为核函数:
K(x,x′)=exp(-‖x-x′‖2/σ2)。
在运用支持向量机模型建模中,参数的选取对模型精度和推广能力有着直接影响,进而影响模型的预测性能。总希望能够找到最佳的参数组合。现有的参数选取确定方式有交叉确定法、经验法等传统方法以及粒子群算法、遗传算法等智能算法。交叉确定法是将样本数据划分为K组,任意抽取K-1组样本作为训练集并将训练结果用于剩余样本的验证,经过多次训练和验证,直到所有样本皆作为验证样本,计算成本偏高,样本需求大,在实际操作中存在困难。而经验法则需要根据参数与样本间的先验公式来确定,需反复实验。经典的遗传算法进行参数寻优时易得到局部最优解,而粒子群算法通过不断调整自身最优和种群最优的关系能够很好地避免陷入局部最优解问题,寻得参数最佳组合,因而本文选取粒子群算法来进行参数寻优[12]。
1.2粒子群算法
粒子群算法(PSO)[13]是通过模拟鸟群的觅食行为从而求解优化问题。首先,在解空间内随机初始化鸟群,鸟群内的每一只鸟称为“粒子”,这些“粒子”在全部解空间内以某种规律移动,经过若干次迭代后找到最优解。在每一次迭代中、粒子通过跟踪2个“极值”来更新自己。
文章来源:《交通运输工程学报》 网址: http://www.jtysgcxb.cn/qikandaodu/2020/1024/411.html